第一百五十章 我怀疑我是不是忘带了脑子(1 / 2)

其实分形这个东西,在我们生活中还是比较常见的。

举个栗子~~

雪花!

不是雪花啤酒啊,是雪花!

一朵雪花,你用肉眼看的话,它是形状是一个六角形。

当你把它放在显微镜下,放大几百数千倍后,看到的细节部分形状也是六角形。

也就是说,一朵雪花,是由个极其微小的六角形晶体组成的较大的六角形晶体!

当然,还有精子,也符合分形原理。

于是人们便用数学方法去表示这些分形现象。

经过人们几百年的研究,分形理论,在数学领域,有了三个非常重要的模型。

他们分别是:三分康托集,Koc曲线,Jl集。

这次两位选手挑战的项目,就与朱利亚集和(Jl集)有关。

朱利亚集和的定义很简单:Z(+1)=Z()^2+c(c是常数)

定义式很简单,一个普通的高中生就能看懂其中的意思。

但朱利亚集的神奇之处在于:其数学定义非常简单,但他生成的图像却复杂的令人不可思议,其中包含了深邃的数学原理——或者还有我们人类自己臆想的哲学。

嗯,已经涉及到了哲♂学问题。

一个朱利亚集,简单来说,就是将Z(+1)=Z()^2+c这个公式不断迭代形成的。

迭代大部分人应该都知道。

比如说:考虑函数f(z)=z^2-0.75。固定z0的值后,我们可以通过不断地迭代算出一系列的z值:z1=f(z0),z2=f(z1),z3=f(z2),…。比如,当z0=1时,我们可以依次迭代出:

z1=f(1.0)=1.0^2–0.75=0.25

z2=f(0.25)=0.25^2–0.75=-0.6875

…………

z5=f(-0.6731)=(-0.6731)^2–0.75=-0.2970

………

可以看出,Z()这个函数,在不断的迭代之后,结果会逐渐趋于某一个值。

当然,这只是Z(0)=1的变化。

数学家对朱利亚集经过一系列不可描述的研究之后,发现并不是所有的Z(0)值都能组成有界的分形图形。

只有Z(0)在【-1.5,1.5】范围内,Z()的值才是有限的。

也就说,只有在【-1.5,1.5】之内,朱利亚集才能构成有界的分形图形。

而这一次,节目组将Z(0)的值固定,针对参数c的变化进行出题。

参数c,可写为c(x,y)=x+y。

c的值,由一个实部x,和一个虚部y来决定。

改变x,y的值,其对应的分形图也会发生变化。

并且,x,y的变化,是非线性的,时快时慢。

嘉宾会随机在x,y在一定区间(准确的说是【-1,1】)内变化生成的100分形动画中,挑选7个。

从每个分形动画中截取50张分形图。

程诺和李十夜两人,可各选择2张,显示该分形图对应x,y的数值。

然后两人通过现场的学习,推演出公式到图形的生成逻辑。

然后根据推到出的生成逻辑,来判断具体的x,y的值,精确到小数点后3位。误差,在【-0.001,0.001】之间!

七道题目,七个分形动画,七个生产逻辑,一百七十五张分形图形,28000000种x,y的可能取值。

选手需要做的,就是在28000000种可能性当中,找出那唯一正确的一种!

七道题目,才有抢答模式。

答对加一分,答错对面加一分。

谁先获得四分,谁就获胜!

规则,播放完了。

全场的观众你看看我,我看看你。

一脸懵逼!

加入书签